
Dominator Tree of a Directed Graph

Tanuj Khattar

1

Introduction

In this article I am going to explain the concept of Dominators in a directed
graph, its applications and an efficient algorithm for construction of dominator
tree published by Robert Tarjan[1].

Since there is a lot of content to be covered, the post is going to be a bit
long. So, please be patient.

Pre Requisites

DFS in directed graphs , DSU

Basic Definitions

• Dominator : Dominators are defined in a directed graph with respect to
a source vertex S. Formally, a node u is said to dominate a node w w.r.t
source vertex S if all the paths from S to w in the graph must pass through
node u. Note that only the vertices that are reachable from source vertex
in the directed graph are considered here. Hence, Hereafter in the article
it is assumed that every vertex in the graph is reachable from the source.

• Immediate Dominator : A node u is said to be an immediate dominator
of a node w (denoted as idom(w)) if u dominates w and every other
dominator of w dominates u.

Theorem. 1 : Every vertex of the directed graph, except the source S,will
have at-least one dominator.

Proof. Since every path from source S to any vertex w in the graph always
passes through the source vertex, hence the source vertex S dominates
every other vertex in the graph.

Theorem. 2 : Every vertex of the directed graph, except the source S,
has a unique idom.

Proof. Let u and v be two idoms of a vertex w (6= S) . By definition of
idom, u should dominate v and v should dominate u but since dominator
relationship is anti-symmetric, it leads to a contradiction!

• Dominator Tree : The edges {(idom(w), w) | w ∈ V - {S} } forms a
directed tree with S being the root r of the tree. Fig1 shows a directed
graph with the source vertex marked and Fig2 shows its corresponding
dominator tree wrt the source vertex. Before proceeding further, try to
come up with an algorithm (irrespective of the complexity) to build the
dominator tree of a given graph.

2

3

Naive O(N ∗M) Approach

A naive approach to build the dominator tree could be that initially do a dfs
from the source vertex to check what all vertices are reachable from the source.
Then, for each vertex w , remove the vertex from the graph and again do dfs
from source vertex and all those vertices which were earlier visited but not now
are the ones that are dominated by vertex w. Once we do this for every vertex
of the graph, for every vertex we shall have a list of all the vertices that this
vertex dominates i.e. a list of all the vertices that lie in the subtree of this
vertex in the dominator tree. Hence, we can easily construct the dominator tree
using this information. Since we perform one dfs for every vertex in the graph,
complexity would be O(n ∗m).

A Faster O((N +M)logN) approach

Before explaining the faster approach,

• We do a dfs on the given graph from the source vertex and assign new
numbers to each vertex of the graph which would be equal to the arrival
time of the vertex in the spanning tree T obtained by the dfs.

• Also, we define another term called semi-dominator (written as sdom)
as:
sdom(w) = min{v| there is a path v = v0, v1, v2 . . . vk such that vi > w
for i ∈ [1, k − 1]}

The following graph shows semi-dominators marked for every vertex of
the graph given in Fig − 1.

4

A few important points regarding semi-dominators

1. If w 6= S be any vertex , then sdom(w) is a proper ancestor of w
in the dfs tree T .

Proof. : By definition of sdom, parent(w) in the spanning tree T is one
of the candidates for sdom. Hence, sdom(w) <= parent(w). Now let
sdom(w) not be an ancestor of w. Then, sdom(w) would lie in a subtree
towards the left side of w. Now in such a case, there should exist a non-
tree edge coming from a left subtree towards the right subtree to satisfy
the definition of sdom, which is not possible. Hence sdom(w) will always
be an ancestor of w.

2. If w 6= S be any vertex, then idom(w) is an ancestor (not neces-
sarily proper) of sdom(w) in the dfs tree T .

Proof. : Clearly, idom(w) must lie on the path from source to w in the
spanning tree T because if it is not, there would be a path from source to
w not passing through idom(w) which leads to a contradiction! Also, by
definition of sdom, idom(w) cannot lie on the path from sdom(w) to w in
the spanning tree T . Hence, idom(w) is an ancestor of sdom(w).

3. Let v be an ancestor of w in the spanning tree T , then either
-v is an ancestor of idom(w) or
-idom(w) is an ancestor of idom(v)

Proof. : Let idom(w) be an ancestor of v and idom(v) be an ancestor of
idom(w), then there exist a path from idom(v) to v avoiding idom(w) in
the graph. Also, since v is an ancestor of w, it implies that there exists
a path from idom(v) to w avoiding idom(w). This leads to a contradic-
tion! Hence, either v is ancestor of idom(w) or idom(w) is an ancestor of
idom(v).

4. Let w 6= S. If, for every vertex u which is an ancestor of w
and has sdom(w) as its proper ancestor, sdom(u) >= sdom(w) then
idom(w) = sdom(w).

Proof. : Let idom(w) be a proper ancestor of sdom(w). It implies that
there exists a path from idom(w) to w avoiding sdom(w) in the graph.
Now there are 2 different ways this path could exist :

• The path avoids all the nodes from w to sdom(w) in the spanning
tree (see fig below). In such a case sdom(w) would have been higher
in the tree (as marked in the fig). This leads us to a contradiction!

5

• The path avoids sdom(w) and includes some other vertex v from w
to sdom(w) (see fig below). In such a case, sdom(v) < sdom(w)
which is not possible. This also leads us to a contradiction!

6

5. Let w 6= S. Let u be a vertex for which sdom(u) is minimum
among all vertices u satisfying ”sdom(w) is a proper ancestor
of u and u is an ancestor of w”. If sdom(u) <= sdom(w) then
idom(w) = idom(u).

Proof. : Clearly, idom(w) <= idom(u) by point 3 (above). Let idom(w) <
idom(u). There must exist a path from idom(w) to w avoiding idom(u).
Now there could be 2 different ways this path could exist :

• The path avoids all the nodes from w to sdom(w) in the spanning
tree . In such a case sdom(w) would have been higher in the tree.
Very similar reasoning like point 4.

• Let y be the first node on the path from idom(w) to w such that
idom(u) is an ancestor of y and y is an ancestor of w. y can either
lie above u or below u.

– If y lies above u (see Fig−6 below) , there would be a path from
idom(w) to u avoiding idom(u) which leads to a contradiction.

– If y lies below u (see Fig− 6 below) , sdom(y) < sdom(u) which
is not possible because u was the node with min sdom among
all the nodes between w and sdom(w). Again, this leads to a
contradiction.

7

• Hence, y = idom(w) = idom(u) is the only possibility. Hence
idom(u) dominates w.

6. Let w 6= S. Let u be a vertex for which sdom(u) is minimum
among all vertices u satisfying ”sdom(w) is a proper ancestor of
u and u is an ancestor of w”. Then :

idom(w) =

{
sdom(w) if sdom(w) = sdom(u)
idom(u) otherwise

Proof. : Follows directly form points 4 and 5 above.

How to calculate sdom ?

Now given the above properties of sdom, idom for every vertex can be easily
calculated given that we have already computed sdoms. The following theorem
provides a way to compute sdoms :

sdom(w) = min({v|(v, w) ∈ E and v < w} ∪ {sdom(u)|u > w and there is
an edge (v, w) such that u is ancestor of v})

In simple words, sdom(w) is the minimum node lying in the union of following
two groups : (remember labels of nodes correspond to the arrival times in dfs
tree !) :

• All the nodes v such that (v, w) is a directed edge in the graph and v < w.
That is, all the ancestors of w that have a forward edge from itself to w.

• sdom(u) where u > w and there is an edge (v, w) in the graph such that u
is an ancestor of v. What that really means is that for all nodes u > w (u
can either be in the subtree of w (see Fig − 7) or in the subtrees towards
right of w (see Fig − 7)) if u is an ancestor of any node node v such that
(v, w) is an edge, then consider sdom(u) for sdom(w). This is important
because since u > w and u is an ancestor of a node v such that (v, w) is
an edge , if we can reach u by any path then the path from u to w doesnt
include any node < w. I have tried to provide a basic intuition here. For
a more concrete proof, refer the original research paper mentioned below
in references.

8

Faster Algorithm For Building Dominator Tree

The steps of the algorithm are as follows :

Step-1: Carry out a dfs on the input graph and assign new labels
to the vertices , equal to the arrival time of the vertex in the dfs.
Also initialize other variables used in the implementation.

The following variables are used in the implementation of the algorithm (see
further points for a better understanding of each variable) :

VI g[N],tree[N],rg[N],bucket[N];

int sdom[N],par[N],dom[N],dsu[N],label[N];

int arr[N],rev[N],T;

1. g[N] : input graph. rg[N] : reverse graph. tree[N] : final dominator tree.

2. arr[N] : mapping of ith node to its new index, equal to the arrival time
of node in dfs tree. par[N] : parent of node i in dfs tree. rev[N] : reverse
mapping of ith node to the original label in input graph.

3. sdom[N] : label of semi-dominator of the ith node. Initially sdom[i] = i.

4. dom[N] : label of immediate-dominator of the ith node. Initially dom[i] =
i.

9

5. bucket[N] : For a vertex i, it stores a list of vertices for which i is the
semi-dominator. Initially it is empty.

6. dsu[N] : parent of ith node in the forest maintained during step 2 of the
algorithm. Initially dsu[i] = i.

7. label[N] : At any point of time, label[i] stores the vertex v with minimum
sdom, lying on path from i to the root of the (dsu) tree in which node i
lies. Initially, label[i] = i. The implementation of this step is as follows :

void dfs0(int u){

T++;arr[u]=T;rev[T]=u;

label[T]=T;sdom[T]=T;dsu[T]=T;

for(int i=0;i<SZ(g[u]);i++)

{

int w = g[u][i];

if(!arr[w])dfs0(w),par[arr[w]]=arr[u];

rg[arr[w]].PB(arr[u]);

}

}

Step-2: Compute semi-dominator of all vertices by applying the
theorem mentioned in previous section. Carry out the computation
vertex by vertex in decreasing order by number.

This is the most important step of the algorithm. For any vertex w in the
graph, there could be 4 different types of in-edges (tree edge,back edge,forward
edge and cross-edge) for w in the spanning tree formed by dfs (Refer figure in
previous section).
Now, we shall process the vertices in decreasing order of number and maintain
a forest of all the vertices that have already been processed. Once a vertex is
processed , the value of its sdom would have been calculated. Also, to maintain
the forest of processed vertices we use dsu data structure that should support
the following operations :

• Find(v) : Let r be the root of (dsu) tree in which node v lies.

– If v == r, return v .

– else return a node u(! = r) with minimum sdom , lying on path from
v to r.

• Union(u,v): Merge the (dsu) trees in which u and v lies.

Implementation of the above two functions is discussed later.

10

Now, to process a node w and calculate its sdom we look at all the incoming
edges of node w. Let (v, w) be an incoming edge, then

• If v < w i.e. v is an ancestor of w, v would not have been processed till
now and hence Find(v) would return v.

• If v > w i.e. (v, w) is either a back-edge or a cross-edge, then v would
have already been processed and Find(v) would return a node u lying on
the path from v to root(v) in the (dsu) tree having minimum sdom. That
is, Find(v) would return a node u > w which is an ancestor of v and has
minimum sdom(v).

The two points above satisfy exactly the definition mentioned in the previ-
ous section to calculate sdoms. This completes our step 2 of the algorithm.

Step-3: Implicitly define the idom of each vertex by applying 6th
property of sdoms mentioned above.

Also, once a vertex has been processed we add the vertex to the bucket of
its sdom . Also, we iterate over the bucket of the current vertex to see for what
all vertices the current vertex is sdom for and update the value of their idoms
using the 6th property of sdoms mentioned above.

Both the steps 2 and 3 can be combined together and realized as follows :

for(int i=n;i>=1;i--)

{

for(int j=0;j<SZ(rg[i]);j++)

sdom[i] = min(sdom[i],sdom[Find(rg[i][j])]);

if(i>1)bucket[sdom[i]].PB(i);

for(int j=0;j<SZ(bucket[i]);j++)

{

int w = bucket[i][j],v = Find(w);

if(sdom[v]==sdom[w])dom[w]=sdom[w];

else dom[w] = v;

}

if(i>1)Union(par[i],i);

}

11

Step-4: Explicitly define the idom of each vertex by carrying out
computation vertex by vertex in increasing by number.

Once the step-2 and 3 is complete, for each vertex w , either idom(w) is al-
ready set (= sdom(w)) or it has been set to some v such that v is an ancestor
of w and idom(w) = idom(v). Now if we start processing vertices in increasing
order of number (arrival time in dfs tree), then for any vertex w :

• if sdom(w)! = idom(w) then idom(w) = idom(idom(w))

• else idom(w) = sdom(w).

Hence , the idoms can be calculated as follows :

for(int i=2;i<=n;i++)

{

if(dom[i]!=sdom[i])dom[i]=dom[dom[i]];

tree[rev[i]].PB(rev[dom[i]]);

tree[rev[dom[i]]].PB(rev[i]);

}

Implementation of DSU using Path Compression

In the section above while explaining the algorithm, the implementation of
Find(x) is kept simplistic to keep the focus more on its functionality than
implementation. Find(x) should be implemented along with Path Compression
to ensure that complexity of the algorithm is O(MlogN) . Given the objective
Find(x) should support, a simple implementation using path compression can
be done as follows :

int Find(int u,int x=0)

{

if(u==dsu[u])return x?-1:u;

int v = Find(dsu[u],x+1);

if(v<0)return u;

if(sdom[label[dsu[u]]]<sdom[label[u]])

label[u] = label[dsu[u]];

dsu[u] = v;

return x?v:label[u];

}

void Union(int u,int v){ //Add an edge u-->v

dsu[v]=u;

}

12

Note that in the implementation of Find above, we need that current root of
the tree be a proper ancestor of the optimal u returned by Find. Hence, during
path compression we attach all the vertices at level 2 instead of level 1 (unlike
the usual path compression!). Although it doesnt really make a difference at
the complexity and is just a small observation!

Conclusion

If you are still reading this post, Congratulations on reaching the end! The
content of the topic is really large so do not give up if you do not understand
everything in the first time. A complete implementation of dominator tree by
me can be found here as a solution to one of the problems mentioned below. I
would like to thank my friend Joyneel for making the diagrams above. I would
also like to thank my friend Himanshu Jaju for helping me create this pdf. Hope
you enjoyed reading the article!

Problems for Practice

• GRAPHCNT-Codechef

• Useful Roads Codeforces

References

[1] : Original Research Paper

13

http://codeforces.com/profile/misra.ji
http://codeforces.com/profile/arrogantIdiot
https://www.codechef.com/problems/GRAPHCNT
http://codeforces.com/gym/100513/problem/L
https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf

